On the Optimality of Tree-reweighted Max-product Message-passing

نویسندگان

  • Vladimir Kolmogorov
  • Martin J. Wainwright
چکیده

Tree-reweighted max-product (TRW) message passing [9] is a modified form of the ordinary max-product algorithm for attempting to find minimal energy configurations in Markov random field with cycles. For a TRW fixed point satisfying the strong tree agreement condition, the algorithm outputs a configuration that is provably optimal. In this paper, we focus on the case of binary variables with pairwise couplings, and establish stronger properties of TRW fixed points that satisfy only the milder condition of weak tree agreement (WTA). First, we demonstrate how it is possible to identify part of the optimal solution—i.e., a provably optimal solution for a subset of nodes— without knowing a complete solution. Second, we show that for submodular functions, a WTA fixed point always yields a globally optimal solution. We establish that for binary variables, any WTA fixed point always achieves the global maximum of the linear programming relaxation underlying the TRW method. Appeared in Uncertainty on Artificial Intelligence, July 2005, Edinburgh, Scotland.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAP estimation via agreement on (hyper)trees: Message-passing and linear programming

We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of tree-structured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in...

متن کامل

Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations

We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to max-product but unlike max-product it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via block coordinate descent in a dual of the LP relaxation of MAP, but does not require any tunable para...

متن کامل

Linear Programming-Based Decoding of Turbo-Like Codes and its Relation to Iterative Approaches

In recent work (Feldman and Karger [8]), we introduced a new approach to decoding turbo-like codes based on linear programming (LP). We gave a precise characterization of the noise patterns that cause decoding error under the binary symmetric and additive white Gaussian noise channels. We used this characterization to prove that the word error rate is bounded by an inverse polynomial in the cod...

متن کامل

Convergent Decomposition Solvers for Tree-reweighted Free Energies

We investigate minimization of treereweighted free energies for the purpose of obtaining approximate marginal probabilities and upper bounds on the partition function of cyclic graphical models. The solvers we present for this problem work by directly tightening tree-reweighted upper bounds. As a result, they are particularly efficient for tree-reweighted energies arising from a small number of...

متن کامل

Multitarget-Multisensor Data Association Using the Tree-Reweighted Max-Product Algorithm

Data association is a fundamental problem in multitarget-multisensor tracking. It entails selecting the most probable association between sensor measurements and target tracks from a very large set of possibilities. With N sensors and n targets in the detection range of each sensor, even with perfect detection there are (n!) different configurations which renders infeasible a solution by direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005